In this activity you will learn

- how to substitute numbers into formulae
- how to use a calculator to evaluate complicated expressions.

Information sheet

You can find how much water a tank can hold by using the formula

$$V = \pi r^2 h$$

Think about ... What do the letters represent in this formula?

Formulae

Fixed values such as the number of days in a week (7) are called **constants**. π is a constant whose value is approximately 3.14; a more accurate value is programmed into scientific calculators.

Values that are not fixed are called **variables**. Letters can be used to represent variables. Relationships between the variables are summarised using **formulae**.

Substituting particular values into a formula gives information about particular cases.

For example, the volume of this tank

 $V = \pi r^2 h = \pi \times 30^2 \times 150$

 $= \pi \times 30 \times 30 \times 150 = 424 \ 115 \ cm^3$

Think about ... Is this a sensible way to give the answer?

1000 cm³ = 1 litre, so the volume is 424 litres (to the nearest litre)

Think about ...

Is this a reasonable answer? How many baths is it? (A bath holds about 80 litres.)

Example: area of a circle

The area of a circle of radius *r* is given by the formula $A = \pi r^2$

Find the area of a circle with radius 5 cm.

diameter

height 150 cm

How to do it ...

Substituting r = 5 into the formula for the area of a circle gives $A = \pi r^2 = \pi \times 5^2 = \pi \times 5 \times 5 = 78.539$...

Think about ...

How far should this be rounded?

The area of the circle whose radius is 5 cm is **79** cm² (to the nearest cm²).

Example: calculating interest

When $\pm P$ is left in a building society account giving r % interest per annum,

the amount in the account after *n* years is given by $A = P \left(1 + \frac{r}{100}\right)^n$.

If £750 is invested in an account giving 4.5% per annum interest, find the amount in the account after 6 years.

How to do it ...

Substitute *P* = 750, *r* = 4.5 and *n* = 6 to give
$$A = 750 \left(1 + \frac{4.5}{100}\right)^6$$

Think about...

How do you work this out? $A = 750 \times 1.045^6 = 976.695...$

The amount in the account after 6 years is £976.70 (to the nearest pence).

Example: radius of a sphere from its volume

The radius of a sphere is $r = \sqrt[3]{\frac{3V}{4\pi}}$ where *V* is its volume.

Find the radius of a ball bearing whose volume is 9.6 mm³.

How to do it.....

Substitute V = 9.6 into
$$r = \sqrt[3]{\frac{3V}{4\pi}}$$
, giving $r = \sqrt[3]{\frac{(3 \times 9.6)}{(4 \times \pi)}}$

Think about...

How do you work this out on a calculator?

$$r = \sqrt[3]{2.29183...} = 1.318...$$

The radius of the ball bearing is 1.3 mm (to 2 sf)

Think about...

Can you think of other examples where you have met formulae before?

Try these

1 The volume of a cylinder is given by the formula $V = \pi r^2 h$

where r is the radius and h is the height.

Find the volume of a cylindrical can with radius 4 cm and height 7.5 cm.

2 The speed of a car after t seconds is given by the formula v = u + at where u is the starting speed in metres per second (m s⁻¹) and a is the acceleration in metres per second per second (m s⁻²).

A car joins a motorway at a speed of 25 m $\rm s^{-1}$ and accelerates at 0.65 m $\rm s^{-2}$ for 12 seconds.

Find its speed at the end of this time.

3 If a ball is thrown up in the air at a velocity of $v \text{ m s}^{-1}$, the height it reaches is given by $h = \frac{v^2}{2g}$, where g is the acceleration due to gravity in m s⁻².

(Note that g is approximately 9.81 m s⁻²)

Find the height reached by a ball thrown up at a velocity of 15 m s^{-1} .

4 The formula for converting temperatures is $C = \frac{5(F-32)}{9}$ where *F* is the temperature in degrees Fahrenheit and *C* is the temperature in degrees Celsius.

An old recipe gives the oven temperature 375 °F. Convert this temperature to Celsius.

5 When an object is released so that it falls to the ground, it reaches a velocity given by $v = \sqrt{2gh}$ where h is the height (in metres) from which it is dropped and g is approximately 9.81 m s⁻².

If a stone is dropped from a bridge at a height of 50 metres above a river, find its velocity on impact.

6 When a car accelerates from a speed of $u \text{ m s}^{-1}$ to a speed of $v \text{ m s}^{-1}$ in t seconds, the distance it travels (in metres) is given by the formula: $d = \frac{t(u+v)}{2}$ Find the distance travelled by a car that accelerates from 17.5 m s⁻¹ to 32 m s⁻¹ in 9.5 seconds.

7 The time taken for a pendulum to make one full swing is $T = 2\pi \sqrt{\frac{l}{g}}$ where *l* metres is the length of the pendulum and *g* is approximately 9.81. Find the time it takes a pendulum of length 0.5 metres to make a full swing.

8 If the monthly rate of interest on a loan is m %, the annual percentage rate (APR) is given by the formula below.

$$\mathsf{APR} = 100 \left[\left(1 + \frac{m}{100} \right)^{12} - 1 \right]$$

Find the APR if the monthly rate is 1.25%.

9 The area of a washer is given by the formula $A = \pi (R^2 - r^2)$ where *r* is the inner radius and *R* is the outer radius.

Find the area when r = 5 mm and R = 7.5 mm.

10 The formula $A = \pi r \sqrt{r^2 + h^2}$ gives the area of the curved surface of a cone with radius *r* and height *h*. Find *A* when *r* = 7.5 cm and *h* = 8.2 cm.

Reflect on your work

- The formula for the volume of a tank is $V = \pi r^2 h$ Which of the letters are variables and which is a constant?
- How do you decide in what order to press the calculator buttons?
- Were there any examples where you found it difficult to use the calculator correctly?

h

• Which did you find the most complicated?